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Abstract

The objective of this study is to improve the inter-
pretability of a previous unsupervised clustering analysis
of the CRT response through a physiological model-based
approach. The developed clustering approach was ap-
plied on 250 CRT candidates based on clinical, original
and classical echocardiographic features. Patient-specific
computational models were proposed for patients associ-
ated of each cluster barycenter in order to provide an ex-
plainable analysis in relation with physiological mecha-
nisms. Five phenogroups were identified from the clus-
tering approach with response rates ranging from 50% to
92.7%. Concerning the model-based approach, a match
was observed between the 16 experimental and simulated
myocardial strain curves pattern with a mean RMSE of
3.97%(±1.74) on the five patients. Moreover, the iden-
tified model parameters provide us information about the
mecano-electrical coupling and tissue properties. The
gain of information provides by the parameters model
identification, added to the clinical and classical echocar-
diographic features is promising for an understanding of
LV mechanical dyssynchrony and the identification of pa-
tients suitable for CRT.

1. Introduction

Despite the recognized clinical benefits of Cardiac
Resynchronization Therapy (CRT) [1] for patients suffer-
ing from systolic heart failure (HF) and a bundle branch
block, around 30% of implanted patients do not respond to
this therapy. An important research subject in this field is
thus to better identify those patients that may benefit from
CRT, before the implantation of the therapy. To this end,
along with the exploitation of electrophysiological data,
our team has proposed the analysis of cardiac mechan-
ical dyssynchrony, by processing regional cardiac strain
curves observed through pre-operative echocardiography

[2–4]. We have also proposed a multiparametric clustering
method, integrating clinical and echocardiographic data,
to phenogroup 250 CRT candidates, with respect to their
response to therapy and outcome [5]. This clustering ap-
proach, led to the identification of specific subgroups of
CRT response and provided information about how cardiac
regional deformations, quantified through strain integrals,
may be related to CRT response.

Although the automatic quantitative analysis of longitu-
dinal strain curves provides a good discriminating value
between clusters, the physiological interpretation of the
modifications observed in regional strain morphologies re-
main a major challenge, since these strain curves reflect
complex mechanisms associated with electrical conduc-
tion delay, mechanical cardiac activity and inter-regional
interactions. In this context, physiological model-based
methods appear as a promising tool to increase the inter-
pretability of the analysis, since most of the parameters
provide a direct physiological meaning [6, 7].

The objective of this paper is to propose a method to
improve the interpretability of the unsupervised clustering
method proposed in our previous works, through a patient-
specific physiological model-based approach. Strain fea-
tures and clinical data from 250 HF patients were analyzed.
Model parameter identification for patients of each cluster
(CRT responder or not) were performed and parameters
reflecting physiological mechanisms were analyzed.

2. Methods

2.1. Clinical data and echocardiography

The prospective database includes 250 patients (from
different centers in Europe) who were eligible on the basis
of clinical grounds for CRT implantation. The study was
carried out in accordance with the principles outlined in
the Declaration of Helsinki and was approved by the local
ethical committee of each center.
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Figure 1: Overview of the proposed methods: a) Database and feature ex-
traction, b) Unsupervised Machine Learning (ML): clustering visualized
by a PCA and c) the patient-specific cardiovascular model.

Clinical, electrocardiographic, and echocardiographic
data were collected. Before implantation of the CRT de-
vice, patients were imaged by transthoracic echocardiog-
raphy (ViVid E9, S70 or E95, General Electric Healthcare,
Horten, Norway) in order to extract regional myocardial
strain curves.

All patients received a follow-up at-rest echocardiogra-
phy at 6 months. Responders were defined as having a ±
15 % decrease in LV end-systolic volume at the 6-month
follow-up, compared with baseline.

2.2. Unsupervised clustering for CRT re-
sponse estimation

All the details of the feature extraction and clustering
phases are described in a previous paper of our team [5].
Feature extraction was performed from clinical, electrocar-
diographic, and echocardiographic data, leading to a set of
70 features per patient. Concerning specifically echocar-
diography, integrals were calculated for strain signals of
each segment from the beginning of QRS to the strain peak
and to the aortic valve closure. The set of all features was
clustered by applying the K-Means method [8] using the
Sklearn [9] library. The optimal number of clusters was
determined using a Silhouette score. In order to visualize
clustering results, a principal component analysis (PCA)
was performed.

2.3. Physiological model description

Four main sub-models, based on previous works of our
team were coupled (Fig.1 right panel): i) cardiac electrical
system, ii) right and left atria, iii) multi segment represen-
tation of the right and left ventricle and iv) systemic and
pulmonary circulations. This model has previously been

described in detail in [7] and has been validated on data
from 3 LBBB HF patients [6].

Cardiac electrical system: The cardiac electrical ac-
tivity was represented by a set of interconnected automata,
adapted from [10].

Right and left atria: The right and left atrial pressures
were defined as linear functions of instantaneous volumes
and elastances representing the elastic properties.

Right and left ventricle: The left ventricle wall was di-
vided into 16 segments according to the standardized seg-
mentation of the AHA. The right ventricle wall was di-
vided into three segments. Each segment s can be sepa-
rated into active and passive components: Ts = Ts,pass +
Ts,act. Ts,pass and Ts,act are described by non-linear re-
lations that include Kpass and Kact, which are parame-
ters related to passive stiffness and myofiber contractility.
An electro-mechanical driving function (EMDF) fa,s was
defined to represent, in a simplified manner, the complex
processes involved in the electro-mechanical coupling at
the tissue-level [10].

Systemic and pulmonary circulations: The cardiovas-
cular system model integrated the pulmonary arteries, cap-
illaries and veins, and the systemic arteries and veins. Each
compartment is represented by resistance and compliance
relations.

2.4. Parameter identification

The identification process was applied to the patient lo-
cated at the smallest distance from the barycenter of each
cluster. Based on our previous study [6], a set of param-
eters are selected for patient-specific model identification.
This identification was implemented with an evolutionary
algorithm (EA) [11]. This type of algorithm consists of
making evolve a population of a set of parameter values X
in order to minimize an error function J . The evolution
of the solution is performed through the application of a
set of transformations of the set X , mimicking biological
evolution processes such as selection, crossover and mu-
tation. Function J is defined as the error between the 16
strain curves from experimental measurements (2-, 3- and
4CH views) and the corresponding simulated strain curves,
obtained by the model using the set of parameters X:

Jerror =

16∑
s=1

Js (1)

Js =
1

Tc

Tc−1∑
te=0

| εexps (te)−εmodel
s (te, X) | + | εexps,min−εmodel

s,min |

(2)
where εexps and εmodel

s are the myocardial strain signals
obtained from available clinical data and simulated outputs
respectively.
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Figure 2: Simulation results of the 5 patients (circled in black) of each cluster visualized by the two first components of a PCA (center). Experimental
(black) strain curves of the 2-, 3- and 4CHamber view and theirs equivalent simulated strain curves (colored) with the bull eyes of identified parameters:
contractility and electrical activation delay for each of the 16 segments. The color strain legend of the 3 views is gather on a bull eye (Basal: 1.anterior,
2.anteroseptal, 3.inferoseptal, 4.inferior, 5.inferolateral, 6.anterolateral; Mid: 7.anterior, 8.anteroseptal, 9.inferoseptal, 10.inferior, 1.1inferolateral,
12.anterolateral; Apical: 13.anterior, 14.septal, 15.inferior, 16.lateral)

Cluster Resp
rate

Significant features

PC1 50% No septal flash and no apical rocking, low lateral
integral, low integral difference between lateral
and septal wall, low electrical delay and contrac-
tility

PC2 70.8% High Global Longitudinal Strain, low Global
Constructive Work, low septal integral, low
mean strain avc, low electrical delay and con-
tractility

PC3 72.4% High contractility, high and medium septal inte-
grals, low mean strain peak, low electrical delay

PC4 85.7 High electrical delay and contractility, high sep-
tal and mean minimum strain time, medium sep-
tal efficiency (E), female gender

PC5 92.7 High electrical delay and contractility, high lat-
eral integrals and integral difference

Table 1: Response rate for each identified cluster and their most signifi-
cant features, colored by relative value: High (green), medium (orange)
and low (red)

3. Results

Clustering: The optimal number of clusters k obtained
using the silhouette method was k = 5 [5]. Tab 1 gathers
the responder rate and the most significant features of each
cluster. The center of Figure 2 shows the clustering results

of [5]. The two first principal components of the PCA
analysis are represented with the CRT response of each
patient. In most phenogroups, the quantitative analysis of
strain curves, especially associated with the lateral wall,
was more discriminative than markers usually associated
with response to CRT (apical rocking and septal flash).

Identifications and simulations: From the identifica-
tion process, we obtained patient-specific simulated strain
curves for the 5 patients associated with each cluster
barycenter (circles in Fig.2) on the 16 LV segments com-
pared to the experimental curves. Although, for some pa-
tients the strain morphologies are not completely repro-
duced for all the 16 curves, a close match was observed
between experimental and simulated curves pattern. The
mean RMSE on the five patients is 3.97%(±1.74). Fig-
ure 2 also shows the identified contractility and electrical
parameters identified for each patient and each LV cardiac
segment, represented through bull-eyes diagrams. Clus-
ters 4 and 5 show an early shortening of the septal wall.
The patients of cluster 3, 4 and 5 (responders), which
are associated with a more elevated rate of responders,
show higher contractility values in all their segments with
a mean contratility value of 29.2%, 29.2% and 35.1% re-
spectively, compared to the patients in clusters 1 and 2
(non-responders) with 20.5% and 14.2%. LV electrical
delays, associated with clusters 4 and 5, are also slightly
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higher than the other clusters with a maximum electrical
delay of 106 ms for these two cluster against 101, 95 and
90 ms for the cluster 1, 2 and 3 respectively.

4. Discussion

The main contribution of this work concerns the pro-
posal of an original pipeline that combines two different
approaches: an unsupervised clustering and the identifica-
tion of a patient-specific physiological model. This study
is a first step to the use of identified parameters in a CRT-
response prediction process. The model-based approach
provides explainable results, since patient-specific param-
eters provide a direct physiological interpretation.

Characterization of responder profiles: Results from
the clustering phase provides groups of different response
rates, which could be analyzed using identified parame-
ters. Groups with below-average rates (cluster 1 and 2) are
globally associated with low strain integral values and re-
duced myocardial contractility, as illustrated on bull-eyes
obtained from the model. The other clusters (3, 4 and
5) present higher strain integral values and more elevated
contractility. Concerning specifically cluster 5, that could
be described as the super responder group, strain morphol-
ogy shows a typical LBBB activation pattern with early
stretching of lateral wall and early shortening of septal
wall. This particular contraction patterns could be ex-
plained by model parameters, which show a preserved con-
tractily and elevated electrical activation delays, known as
pure electrical dyssynchrony.

Integrating model-based and clustering approaches:
The proposed approach improves the interpretability of the
clustering analysis by integrating knowledge of physiolog-
ical mechanisms, related to cardiac contraction, to a phe-
notyping of HF patients. The model-based approach pro-
vides additional information on the regional electrical and
mechanical LV function. The area of reduced contractil-
ity, identified by the model, is of primary importance be-
cause the localization of a potential scar (especially in lat-
eral wall) could be associated with a lower rate of CRT re-
sponse because of the inefficient stimulation of a necrotic
territory. The global approach represents a step forward in
the development of personalized LV modelling in the field
of CRT, as it can help to disclose the intrinsic complexity
of LV mechanics in CRT candidates.

Limitations: Several assumptions have been made to
propose the computational model, including simplifica-
tions concerning the electrical and mechanical behaviors
such as fiber, torsion or a complete mechanical continuity.

5. Conclusion

An original method combining unsupervised and physi-
ological model-based machine-learning methods was pro-

posed for the characterization of responder profiles for car-
diac resynchronization therapy. The proposed approach
improves the interpretability of the clustering analysis for
HF patient phenotyping, since the proposed model explic-
itly integrates meaningful physiological knowledge. Fu-
ture work will be focused on the parameter identification
and evaluation on the whole dataset, as well as on the pro-
posal of a decision support system for therapy planning
based on a patient-specific characterization.
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